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Abstract—The blind source separation problem is considered
through the approach based on non-stationarity and coloration.
In both cases, the sources are usually assumed to be Gaussian.
In this paper, we extend previous works in order to handle
sources drawn from the multivariate Student t-distribution.
After studying the structure of the parameter manifold in this
case, a new blind source separation criterion based on the log-
likelihood of the considered distribution is proposed. To solve
the resulting optimization problem, Riemannian optimization on
the parameter manifold is leveraged. Practical expressions of the
mathematical tools required by first order based Riemmanian
optimization methods for this parameter manifold are derived to
this end. The performance of the proposed method is illustrated
on simulated data.

Index Terms—blind source separation, Student t-distribution,
Riemannian optimization

I. INTRODUCTION

Blind source separation (BSS) is an ubiquitous tool for
signal processing and data analysis with applications in many
engineering fields such as radar, communications, image pro-
cessing and biomedical signal analysis; see [1] for a complete
overview. In this work, we consider the determined linear
instantaneous mixing model

x = As, (1)

where x ∈ Rn corresponds to the observations, s ∈ Rn
contains the sources and A ∈ GLn (n × n non-singular
matrices) is the mixing matrix. Given some observations of x,
the goal is to estimate the sources s and the mixing process A.

Up to now, two different types of methods have been
proposed to perform blind source separation with model (1)
depending on the data at hand. Historically, in the original
formulation of the problem, which corresponds to independent
component analysis (ICA), sources are assumed to be inde-
pendent and identically distributed (i.i.d.) [2]–[4]. To ensure
separability, sources have to be non-Gaussian and higher order
statistics must be employed. On the other hand, if one wants to
be able to separate Gaussian sources, the i.i.d. assumption must
be removed, i.e., some structure of the sources is exploited
such as non-stationarity or coloration [5], [6].

In this paper, we are interested in the second approach, i.e.,
when non-stationarity or coloration is exploited to perform
blind source separation. In this case, one considers T real-
izations of K Gaussian random variables xk = Ask with
covariance matrices AΛkA

T ∈ S++
n (n× n symmetric posi-

tive definite matrices), where the sk are the random variables

corresponding to the sources and whose covariance matrices
are Λk ∈ D++

n (n × n diagonal positive definite matrices).
In practice, the K different sets of observations {xk(t)} can
for instance correspond to different epochs (non-stationarity)
or different frequencies (coloration) [1], [6], [7]. To solve the
problem in the Gaussian case, one usually performs a two-
steps procedure. First, the sample covariance matrices Ck of
the observations {xk(t)} are computed. Then, matrices Ck

are jointly diagonalized with a matrix B ∈ GLn, solution to
the optimization problem

argmin
B∈GLn

∑
k

f(B,Ck), (2)

where f is a diagonality criterion of BCkB
T . Estimates ŝ

and Â of sources s and mixing matrix A are finally given by
ŝ = Bx and Â = B−1.

Previous research on this topic have mainly focused on two
aspects: the choice of the diagonality criterion f in (2) and the
conception of iterative methods to solve (2) given a criterion f .
Concerning the diagonality criterion f , most articles employ
either the least squares one proposed in [4] or the one based on
the log-likelihood introduced in [6]. Recently, different criteria
based on several divergences and distances on S++

n have been
proposed in [8], [9]. Many algorithms to solve (2) for various
diagonality criteria f have been developed; see e.g., [4],
[6], [9]–[12]. In particular, methods based on Riemannian
optimization can be found in [9], [10], [12].

Works based on non-stationarity and coloration consider that
sources are Gaussian. In this paper, our main contribution
is to extend this approach to handle sources drawn from
the multivariate Student t-distribution [13]. Since it has a
heavier tail than the Gaussian distribution, it is more adapted
to account for outliers. To do so, we derive a new blind
source separation criterion based on the log-likelihood of
the data model. To find a minimizer of this criterion, we
propose to exploit Riemannian optimization on the parameter
manifold, which allows to find estimates Â ∈ GLn and
{Λ̂k} ∈ (D++

n )K of the true parameters A and {Λk}. In this
scope, we derive practical expressions for the mathematical
tools required by first order based Riemmanian optimization
methods on this parameter manifold.

This paper contains four sections including this introduction.
In section II, the data model is defined along with the
manifold holding the parameters of the considered distribution.
To handle the diagonal scaling ambiguity of blind source



separation, an original constraint is proposed. Finally, the
Riemannian geometry of the resulting manifold is studied. In
section III, a Riemannian optimization framework is developed
in order to be able to solve optimization problems on the
parameter manifold of interest. A blind source separation
criterion based on the log-likelihood function of the considered
distribution is then derived, thus yielding an original blind
source separation method. In section IV, the performance
of the proposed method is illustrated on simulated data.
As expected, when sources are drawn from the multivariate
Student t-distribution, the proposed method outperforms the
state of the art method [6].

II. MODEL

To design a new blind source separation method adapted to
the multivariate Student t-distribution, we first need to clearly
establish the model of the data along with the parameters they
depend on. In section II-A, the probability density function
of the distribution of the data and the manifold holding
the parameters of interest are defined. In section II-B, as
the approach chosen to solve the blind source separation
problem is based on Riemannian optimization, the Riemannian
geometry of the parameter manifold is studied.

A. Data distribution and parameter manifold

We consider K sets of T observations {xk(t)} of the
random variables xk in Rn following the elliptical distibutions
with density generator function g : R+ → R+ and covariance
matrices AΛkA

T , where A ∈ GLn and Λk ∈ D++
n . The

probability density function f of {xk(t)} is

f({xk(t)}|A, {Λk}) =
∏
k

fd({xk(t)}|AΛkA
T ), (3)

where fd is the probability density function of the multivariate
Student t-distribution with d ∈ N∗ degrees of freedom. Given
{x(t)} with covariance matrix C, we have, up to a factor,

fd({x(t)}|C) =∏
t

det(C)
−1/2

(
1 +

1

d
x(t)TC−1x(t)

)−(d+n)/2

. (4)

The set of parameters (A,Λ1, . . . ,ΛK) of the random
variables xk lies in the manifold GLn × (D++

n )K . The pa-
rameters (A,Λ1, . . . ,ΛK) of the xk are not unique: given
any permutation matrix P and non-singular diagonal matrix
Σ, we have

f({xk(t)}|A, {Λk}) =

f({xk(t)}|APΣ, {Σ−1P TΛkPΣ−1}).

To deal with the diagonal scaling ambiguity resulting from the
invariance through the action of Σ, an additional constraint can
be imposed. In this work, we propose a new constraint, related
to the one introduced in [11]. It is given by∑

k

Λk = In, (5)

where In is the identity matrix. As this constraint is smooth
with respect to (Λ1, . . . ,ΛK), it can be integrated in a
smooth manifold. The permutation ambiguity resulting from
the invariance through the action of P is more tricky as
it cannot be handled in a manifold. However, contrary to
the diagonal scaling ambiguity, it is not an issue from a
numerical point of view as it does not yield algorithms to
converge to degenerate solutions. As most works on blind
source separation, we choose to ignore it. It follows that the
manifold holding the parameters of the distribution of interest
is chosen as

M = {(A, {Λk}) ∈ GLn × (D++
n )K :

∑
k Λk = In}, (6)

which is a submanifold of GLn × (D++
n )K .

B. Riemannian geometry of the parameter manifold

In the following, θ = (A, {Λk}), ξ = (ξA, {ξk}) and
η = (ηA, {ηk}). Since GLn and D++

n are open in Rn×n
and Dn (n × n diagonal matrices), respectively, the tangent
space TθGLn× (D++

n )K can be identified as Rn×n× (Dn)K .
From a statistical point of view, one ideally wants to choose
the Fisher information metric associated with (3) as the
Riemannian metric of GLn×(D++

n )K . However, as illustrated
in [14] for Gaussian sources, the Fisher information metric
appears complicated to deal with in this case and a different
Riemannian metric is prefered. In this work, we choose

〈ξ, η〉θ = tr((ξAA
−1)TηAA

−1) +
∑
k

tr(Λ−2k ξkηk). (7)

The component that depends onA corresponds to the so-called
right-invariant metric on GLn [12], [15]. The component that
depends on Λk correponds to the popular affine-invariant
metric on D++

n [16]. The main interest of the chosen metric on
GLn×(D++

n )K is that it is invariant with respect to the actions
of diagonal and permutation matrices Σ and P described in
the previous section.

The manifoldM defined in (6) that holds the parameters of
interest is a submanifold of GLn×(D++

n )K . Thus, the tangent
space TθM at θ ∈ M is a subspace of TθGLn × (D++

n )K .
Furthermore, M can inherit the Riemannian metric (7) of
GLn×(D++

n )K . Given θ ∈M, the tangent space TθM along
with the orthogonal projection map Pθ : Rn×n × (Dn)K →
TθM according to (7) are given in Proposition 1.

Proposition 1. The tangent space TθM at θ ∈M is

TθM = {ξ ∈ Rn×n × (Dn)K :
∑
k ξk = 0}.

The orthogonal projection map Pθ : Rn×n × (Dn)K → TθM
according to (7) is given by

Pθ(ξ) = (ξA, {ξk − (
∑
` Λ2

`)
−1∑

` ξ`Λ
2
k}).

Proof. The manifold M of interest is defined as M = {θ ∈
GLn × (D++

n )K : ϕ(θ) = 0}, where ϕ : GLn × (D++
n )K →

Rn×n is the smooth mapping such that ϕ(θ) =
∑
k Λk − In.

It follows that the tangent space TθM at θ ∈ M is TθM =
{ξ ∈ Rn×n×(Dn)K : Dϕ(θ)[ξ] = 0}, where Dϕ(θ)[ξ] is the



derivative of ϕ at θ in direction ξ. Noticing that Dϕ(θ)[ξ] =∑
k ξk yields the result.
The normal space NθM at θ ∈ M is defined as NθM =
{η ∈ Rn×n × (Dn)K : ∀ξ ∈ TθM, 〈ξ, η〉θ = 0}. One can
check that, in our case, it is given by

NθM = {(0, {Λ2
kη}) : η ∈ Dn}.

It follows that Pθ(ξ) = ξ− (0, {Λ2
kη}), where η is the diago-

nal matrix such that Pθ(ξ) ∈ TθM, i.e.,
∑
k(ξk−Λ2

kη) = 0.
We thus obtain η = (

∑
` Λ2

`)
−1∑

` ξ`. �

These elements of Riemannian geometry are sufficient to
build the Riemannian optimization framework onM required
for blind source separation in section III.

III. BLIND SOURCE SEPARATION METHOD

The blind source separation problem can be written as an
optimization problem on the manifold M. In section III-A,
a Riemannian optimization framework on M is built. In
section III-B, a blind source separation based on the likelihood
of the multivariate Student t-distribution is proposed and the
elements required for Riemannian optimization on M are
provided.

A. Riemannian optimization on the parameter manifold

Let f :M→ R be an objective function defined onM. To
be able to perform Riemannian optimization [17] of f on M,
it is needed to have the Riemannian gradient of f along with
a retraction on M, which, given θ ∈ M, maps the elements
of TθM back onto M. Concerning the Riemannian gradient
on M, Propositon 2 shows that it can be obtained from the
Euclidean gradient of f , which is defined on the ambient space
Rn×n × (Dn)K .

Proposition 2. The Riemannian gradient gradM f(θ) ∈ TθM
of f at θ ∈M according to metric (7) is given by

gradM f(θ) = Pθ

(
∇fAATA, {Λ2

k∇fk}
)
,

where Pθ : Rn×n×(Dn)K → TθM is defined in Proposition 1
and ∇f(θ) = (∇fA, {∇fk}) ∈ Rn×n × (Dn)K is the
Euclidean gradient of f .

Proof. First recall that ∇f(θ) is the only element of Rn×n×
(Dn)K such that for all ξ ∈ Rn×n × (Dn)K ,

D f(θ)[ξ] = 〈∇f(θ), ξ〉E ,

where 〈·, ·〉E is the Euclidean metric on Rn×n×(Dn)K , which
is defined as

〈ξ, η〉E = tr(ξTAηA) +
∑
k

tr(ξkηk).

Similarly, the Riemannian gradient of f on GLn × (D++
n )K

according to the Riemannian metric (7) is the only element of
Rn×n × (Dn)K such that, for all ξ ∈ Rn×n × (Dn)K ,

D f(θ)[ξ] = 〈gradGLn×(D++
n )K f(θ), ξ〉θ,

From 〈gradGLn×(D++
n )K f(θ), ξ〉θ = 〈∇f(θ), ξ〉E , one can

check that

gradGLn×(D++
n )K f(θ) =

(
∇fAATA, {Λ2

k∇fk}
)
.

The rest of the proof follows from [17, Equation (3.37)],
which indicates that gradM f(θ) is obtained by projecting
gradGLn×(D++

n )K f(θ) onto TθM. �

The Riemannian gradient gradM f(θ) ∈ TθM of f at θ ∈
M allows to define a descent direction ξ of f in the tangent
space TθM. In order to achieve a new point on the manifold
M from ξ, a retraction R onM is needed. Given θ ∈M, the
retraction Rθ at θ is the mapping from TθM onto M such
that:

1) Rθ(0θ) = θ, where 0θ is the zero element of TθM.
2) DRθ(0θ)[ξ] = ξ.

Proposition 3 contains a proper retraction on M obtained by
projecting a second order approximation of the Riemannian
exponential map of GLn × (D++

n )K onto M.

Proposition 3. Given θ ∈ M, a proper retraction Rθ :
TθM→M at θ is given, for all ξ ∈ TθM by

Rθ(ξ) = Γ(Rθ(ξ)),

where Rθ is a second order approximation of the Riemannian
exponential map of GLn × (D++

n )K equiped with (7), which
is given by

Rθ(ξ) = θ + ξ+
1
2 (ξAA−1ξA+ξA(ATA)−1ξTAA−A

−T ξTAξA,{Λ
−1
k ξ2k}),

and Γ : GLn × (D++
n )K →M is the projection map defined,

for all θ ∈ GLn × (D++
n )K , as

Γ(θ) = (A, {(
∑
` Λ`)

−1Λk}).

Proof. Since GLn × (D++
n )K equiped with metric (7) is a

Riemannian product manifold, we know from [17] that the
Riemannian exponential map is defined, for all θ ∈ GLn ×
(D++

n )K and ξ ∈ Rn×n × (Dn)K , as

exp
GLn×(D++

n )K

θ (ξ) =
(

expGLn
A (ξA), {exp

D++
n

Λk
(ξk)}

)
,

where

expGLn
A (ξA) =

exp(ξAA
−1 − (ξAA

−1)T ) exp(ξAA
−1)TA

is the Riemannian exponential map of GLn equiped with the
right-invariant metric [12], [15] and

exp
D++
n

Λk
(ξk) = Λk exp(Λ−1k ξk)

is the Riemannian exponential map of D++
n equiped with the

affine-invariant metric [16]. The matrix exponential admits the
second order approximation

exp(X) = In +X +
1

2
X2 + o(X2).



By injecting this approximation in the formula of the Rie-
mannian exponential map on GLn × (D++

n )K , one can show
that the proposed operator R is a second order approximation
of this Riemannian exponential map, which is also enough
to prove that it is a retraction on GLn × (D++

n )K . More-
over, it is readily checked that Γ is a projection map from
GLn× (D++

n )K ontoM. Therefore, from [18], we know that
the proposed operator R is a proper retraction on M. �

The Riemannian gradient of f :M→ R and the retraction
R on M are enough to define a Riemannian gradient descent
algorithm on M. Indeed, given iterate θi, the next iterate is
obtained by

θi+1 = Rθi(−ti gradM f(θi)), (8)

where ti is the stepsize, which can for instance be computed
through a linesearch; see [17] for details.

To be able to use more sophisticated Riemannian opti-
mization algorithms such as conjugate gradient or BFGS, one
further needs to define a vector transport operator T , which
allows to transport a tangent vector from one tangent space
onto another [17]. Given θ ∈ M and ξ, η ∈ TθM, the vector
transport T (θ, ξ, η) associated to the retraction R transports
the tangent vector η in the tangent space TRθ(ξ)M of Rθ(ξ).
A generic solution [17] is to choose T (θ, ξ, η) as

T (θ, ξ, η) = PRθ(ξ)(η), (9)

where, in our case, P is the projection map defined in
Proposition 1 and R is the retraction defined in Proposition 3.

B. Application to the log-likelihood of the t-distribution

To perform the blind source separation of the K sets of T
observations {xk(t)} drawn from the distribution defined in
Section II-A, the optimal solution is to employ the maximum
likelihood estimator associated with the probability density
function (3). It is equivalent to minimizing the negative log-
likelihood of (3) on M, which is given by

f(θ) =
∑
k

f++
xk

(ψk(θ)), (10)

where ψk : M → S++
n is such that ψk(θ) = AΛkA

T and
f++ is the negative log-likelihood of the multivariate Student
t-distribution with d ∈ N∗ degrees of freedom. Given T obser-
vations {x(t)}, the negative log-likelihood f++

x : S++
n → R

associated with (4) is defined, up to constants, as

f++
x (C) =

T

2
log det(C)

+
d+ n

2

∑
t

log(d+ x(t)TC−1x(t)). (11)

To be able to minimize (10) with a Riemannian optimiza-
tion algorithm on M within the framework developed in
secion III-A, it remains to provide the Euclidean gradient of
f on Rn×n × (Dn)K . This is achieved in Proposition 4.

Proposition 4. The Euclidean gradient ∇f(θ) of the blind
source separation criterion f defined in (10) at θ ∈ M is
given by

∇f(θ) =
(
2
∑
k∇f++

xk
(ψk(θ))AΛk,

{ddiag(AT∇f++
xk

(ψk(θ))A)}
)
,

where ddiag(·) returns the diagonal part of its argument and
∇f++

x (C) is the Euclidean gradient of (11) at C ∈ S++
n ,

which is

∇f++
x (C) =

C−1

[
T

2
C − d+ n

2

∑
t

x(t)x(t)T

d+ x(t)TC−1x(t)

]
C−1.

Proof. By definition of f ,

D f(θ)[ξ] =
∑
k D fxk(ψk(θ))[Dψk(θ)[ξ]]

=
∑
k〈∇f++

xk
(ψk(θ)),Dψk(θ)[ξ]〉Rn×n

,

where Dψk(θ)[ξ] = AΛkξ
T
A + ξAΛkA

T + AξkA
T and

〈·, ·〉Rn×n
is the Euclidean inner product on Rn×n. Basic

calculations yield

D f(θ)[ξ] =
∑
k 2〈∇f++

xk
(ψk(θ)), ξAΛkA

T 〉Rn×n

+
∑
k〈∇f++

xk
(ψk(θ)),AξkA

T 〉Rn×n

= 〈2
∑
k∇f++

xk
(ψk(θ))AΛk, ξA〉R

n×n

+
∑
k〈ddiag(AT∇f++

xk
(ψk(θ))A), ξk〉R

n×n
,

where we used tr(XΣ) = tr(ddiag(X)Σ) for all Σ ∈ Dn.
The result is finally obtained by identification. �

IV. NUMERICAL ILLUSTRATION

To simulate data, we generate K = 30 n×n (with n = 10)
symmetric positive definite matrices Ck according to model

Ck = AΛkA, (12)

where A = UΣV T , with U and V random orthogonal
matrices, and Σ random diagonal matrix whose minimal and
maximal elements are 1/

√
α and

√
α, where α = 10 is the

condition number of A. Matrices Λk ∈ D++
n correspond to

the covariance matrices of the sources and have i.i.d. elements
drawn from the chi squared distribution with expectation
one. For T ∈ {15, 25, 50, 75, 100, 500, 1000}, 100 sets of T
realizations {xk(t)} randomly drawn from the multivariate
Student t-distribution with d = 3 degrees of freedom.

In each case, the blind source separation of the simu-
lated data is performed with two methods. For the first
one, denoted jadiag, the sample covariance matrices Ĉk =
T−1

∑
t xk(t)xk(t)T are computed. These matrices are then

jointly diagonalized with B, minimizer of the log-likelihood
criterion for Gaussian sources [6]. The estimated mixing
matrix and source covariance matrices are given by Â = B−1

and Λ̂k = ddiag(BĈkB
T ). The second method, denoted

MLE t-dist, consists in optimizing the negative of the log-
likelihood (10) on M for d = 3 with a Riemannian conju-



gate gradient alogrithm [17]. Optimization is performed with
manopt toolbox [19].

To measure the performance of the two methods, three
performance indexes are considered. The first one is the
popular Moreau-Amari index [20], which measures how close
M = Â

−1
A is to a permuted diagonal matrix. It is defined

as

IM-A(M) =
1

2n(n− 1)

n∑
p=1

∑n
q=1 |Mpq|

max
1≤q≤n

|Mpq|
− 1



+
1

2n(n− 1)

n∑
p=1


n∑
q=1
|Mqp|

max
1≤q≤n

|Mqp|
− 1

 . (13)

It is a measure between zero and one, with zero indicating a
perfect recovery of the mixing process. The second one mea-
sures the distances in S++

n between AΛkA
T and ÂΛ̂kÂ

T
.

It is defined as

I(S++
n )K =

1

K

∑
k

δ2R(AΛkA
T , ÂΛ̂kÂ

T
), (14)

where δR is the usual Riemannian distance function on
S++
n [16]. The last performance index, denoted I(sS++

n )K , is
the same as I(S++

n )K except that we normalize the determi-

nants of AΛkA
T and ÂΛ̂kÂ

T
. It allows to only consider the

structure of the estimated matrices without taking into account
their power.

In Figure 1, we observe that the proposed method MLE
t-dist features better performance than jadiag for all three
performance indexes for every T . These results are expected
since MLE t-dist corresponds to the optimal log-likelihood
estimator according to these simulated data. Notice that the
index I(S++

n )K of jadiag shows poor performance whereas
I(sS++

n )K is more satisfying. It indicates that jadiag fails at
retrieving the power of AΛkA

T but captures their structure.
On the other hand, MLE t-dist estimates both the power and
the structure of AΛkA

T for these simulated data.
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